Questionbank Biology

Unit -IV

Chapter-16. Photosynthesis

IMPORTANT POINTS

Green plants make their own food by photosynthesis. During this process carbon dioxide form the atmosphere is taken in by leaves through stomata and used for making carbohydrates, principally glucose and starch. Photosynthis takes place only in the green parts of the plants, mainly the leaves. Within the leaves, the mesophyll cells have a large number of chloroplasts that are responsible for CO2 fixation. Within the chloroplasts, the membranes are sites for the light reaction, while the chemosynthetic pathway occurs in the stroma. photosynthesis has two stages the light reaction and the carbon fixing reations. in the light reaction the light energy is absorbed by the pigments present in the antenna and funnelled to special chlorophyll a molecules called reaction centre chlorophylls there are two photosystems, PS I and PS II. PS I has a 700 nm absorbing chlorophyll a P700 molecule at its reaction center, while PS II has a P680 reaction centre that absorbs red loght at 680 nm After absorbing light, electrons are excited and transferred through PS II and PS I and finally to NAD forming NADH. during this process a proton gradient due to movement through the thylakoid The breakdown of the protons gradient due to movement through the FO part of the ATPase enzyme releases enough energy for synthesis of ATP splitting of water molecles is associated with PS II resulting in the release of 02, protons and transfer of electrons to PS II In the carbon fixation cyale, CO2 is added by the enzyme, RuBisCO, to a 5 carbon compound RuBP that is converted to 2 molecules of 3- carbon PGA. this is then converted to sugar by the Calvin cycle, and the RuBp is regenerated. During this process ATP and NADPH synthesised in the light reaction are utilsed RuBisCO also catalyses a wasteful oxygenation reaction in C3 plants: Photorespiration Some tropical plants show a special type of photosynthesis called C4 pathway in these plants the first product of CO2 fixation that takes place in the mesophyll, is a 4-carbon compound. in the bundle sheath cells the Calvin pathway is carried out for the synthesis of carbohydrates.

- 1. The name Melvin Calvin is associated with
 - (a) synthesis of ATP during photosynthesis
 - (b) release of water during photosynthesis
 - (c) carbon fixation during photosynthesis
 - (d) capture light energy during photosynthesis
- 2. Who gave chemical compositions of chlorophyll and carotenoids ?
 - (A) Park and Biggins (B) Meyers and French
 - (C) Willstatter and Stahi (D) Arnon and Benson
- 3. The non-polar part of chlorophyll is

(A) phytol (B) porphyrin (C) pyrrol

(D) none above

	Questionbank Biology			
4.	The approximate dimension of chlorophyll porphyrin ring is.			
	(A) 1 A° square (B) 5 A° square (C) 10 A° square (D) 15 A° square			
5.	Photosynthesis is most active in			
	(A) sunlight (B) yellow (C) red (D) green			
6.	Intensity of light increase 20 times, rate of photosynthesis will			
	(A) increase (B) not increase			
	(C) decrease (D) increase till feed back inhibition.			
7.	Out of the total light energy that is available for plants is			
	(A) 50 % (B) 75 % (C) 25 % (D) 1—2%			
8.	One photon is blue light containskcal and of red lightkcal			
	(A) 70 ; 40 (B) 220 ; 70 (C) 10 ; 90 (D) 90 ; 10			
9.	The most efficient convertor of sunlight is			
	(A) Potato (B) Tomato (C) Sugar cane (D) Papaya			
10.	Cyclic photophosphorylation is confined to			
	(A) Photosystem I (B) Photosystem II			
	(C) both a & b (D) none above			
11.	For synthesis of one gram of hexose, the land plant consumes.			
	(A) Only $1/3$ of the CO ₂ of air (B) Only $1/4$ of the CO ₂ of air			
	(C) Only $2/3$ of the CO ₂ of air (D) none of the above			
12.	For synthesis of one glucose molecule, the number of ATP required are			
	(A) 9 ATP for C_3 cycle and 20 ATP for C_4 cycle			
	(B) 18 ATP for C_3 cycle and 30 ATP for C_4 cycle			
	(C) 22 ATP for C_3 cycle and 35 ATP for C_4 cycle			
	(D) 24 ATP for C_3 cycle and 36 ATP for C_4 cycle			
13.	The volume of O_2 librated in photosynthesis has the following ratio to CO_2 .			
	(A) $O_2/CO_2 = 1$ (B) $O_2/CO_2 = 1/2$			
1.4	(C) $O_2/CO_2 = 2/1$ (D) $O_2/CO_2 = 3/1$			
14.	The inhibiting effect of oxygen in C_3 plants on photosynthesis is			
	(A) solarization (B) photooxidation			
15	(C) Warbug's effect (D) none above			
15.	Pick up C_4 plant. (A) Parava (D) Patata (C) Maira (D) Paa			
16	(A) Papaya (B) Potato (C) Maize (D) Pea			
16.	It is advantageous to use a water plant to demonstrate photosynthesis other than a land plant because. (A) it photosynthesize rapidly (B) it respires slowly			
17.	(C) it does not transpire (D) O_2 bubbles from cut and can be collected over H_2O . For chlorophyll formation most important are			
1/.	(A) Fe^{++} and Ca^{++} (B) Fe^{++} and Mg^{++} (C) Mg^{++} and Ca^{++} (D) all the above			

			Questionbank Biology			
18.	Translocation of sugar in angiosperms occur in form of					
	(A) glucose	(B) starch	(C) lactose	(D) sucrose		
19.	Q_{10} is					
	(A) respiratory co	oefficients	(B) photosynthetic	coefficient		
	(C) photosynthet	ic yield	(D) temperature co	effiecient		
20.	Photorespiration is favoured by					
	(A) low temperat	ures	(B) low light intensi	ity		
	(C) high O_2 and l	ow CO ₂	(D) low O_2 and hig	th CO ₂		
21.				2		
	(A) mobile electr	on carriers	(B) enzymes of oxi	dative phosphorylation		
	(C) enzymes of k	rebs cycle	(D) none of the ab	ove		
22.	During dark read phosphogylceric			ee carbon atoms of each molecule of 3 –		
	(A) RuBP only		(B) CO_2 only			
	(C) RuBP + CO,		(D) $\operatorname{RuBP} + \operatorname{CO}_2$	PEP.		
23.	4	-	of 3 molecules of CO_2			
201	(A) 9 ATP and 6		(B) 8 ATP and 8 N	ADPH.		
	(C) 9 ATP and 3	2	(D) 6 ATP and 6 N	2		
24.		The share and strand s				
	(A) dehydrogena	-	(B) RuBP carboxy	lase		
	(C) pyruvic carbo		(D) hexokinase			
25.		If thylakoids are removed and kept in culture medium having CO_2 and H_2O and exposed to light				
	they cannot form hexose sugars as end product because.					
	(A) light trapping device absent (B) pigments P-700 and P-680 not linked					
	(C) CO ₂ assimilat	ting enzymes al	osent (D) CO ₂ assimilation	on cannot occur in light		
26.	Which of the following plant is efficient converter of solar energy whose net productivity					
	2-4 kg/m ² /yr or e	even higher.				
	(A) Wheat	(B) rice	(C) sugarcane	(D) bajra		
27.	The number of pl	hotons required	l to release one mole of (D_{2} in photosynthesis called.		
	(A) quantum yiel	d ((B) quantum requirement	-		
	(C) red drop	(D) Emerson's effect			
28.	Calvin cycle repr	esents one of th	e following phenomenor	1.		
	(A) oxidative car	boxylation (B) dark phosphorylation	L		
	(C) dark respirat	ion (D) reductive carboxylati	on		
29.	Hill reaction takes place					
	(A) in the absence	$e of CO_2$				
	(B) in the presence of carbon dioxide					
	(C) in the absenc					
	(D) none above					

		Questionbank Biology				
30.	Match the names of scientists given under Column $-I$ with their important contributions given under Column $-II$; choose the answer which gives correct combination of the alphabets :					
	Column – I(Scientists)	Column – II(Contr	ibutions)			
	P. Peter Mitchell	i) Steps of dark reaction o	f photosynthesis.			
	Q. J.W. Gibbas	ii) Photosynthetic phospho	brylation			
	R. Danial Arnon (iii) Concept of free energy	7			
	S. Melvin Calvin (iv) Chemiosmotic hypothe	esis			
	(v) Mass flow hypothesis					
	(a) $P = (iv), Q = (iii), R = (ii), S$	= (i)				
	(b) $P = (iii), Q = (iv), R = (i), S =$	= (i)				
	(c) $P = (iv), Q = (v), R = (iii), S$	=(ii)				
	(d) $P = (iv), Q = (iii), R = (i), S =$	=(ii)				
31.	Match Column – I with given und	er Column – II ; choose the	answer which gives correct combination			
	Column – I(Scientists)		Column – II(Contributions)			
	P. A pigment which absorbs red	and far-red light	(i) Cytochrome			
	Q. Main pigment involved in tran	nsfer of electrons in	(ii) PEP carboxylase			
	photosynthesis is					
	R. NADPH ₂ is generated throug	h	(iii) Photochrome			
	S. Enzyme which fixes CO_2 in C	⁴ plants	(iv) Photosystems			
	(a) $P = (i)$, $Q = (ii)$, $R = (iii)$, $S = (iii)$	S = (iv)				
	(b) $P = (iii), Q = (i), R = (iv), S$	S = (iii)				
	(c) $P = (iii), Q = (ii), R = (iii), S$	S=(i)				
	(d) $P = (i), Q = (ii), R = (iv), S$	= (iii)				
32.	The basic feature of typical C_4 plants showing 'Kranz' anatomy is					
	(A) the presence of chloroplasts in mesophyll and epidermal cells					
	(B) the presence of chloroplasts in bundle sheath cells					
	(C) the presence of rudimentary chloroplasts in bundle sheath cells and typical chloroplasts with well-formed grana in mesophyll cells					
	(D) the presence of typical chloro chloroplasts in the mesophyll cel		ana in bundle sheath cells and rudimentary			
33.	A. Six turns of Calvin-cycle result in the production of one molecule of glucose $(C_6H_{12}O_6)$					
	R. Three molecules of ribulose 1, 5 – bisphosphate (Ru BP) react with three molecules of carbon dioxide to produce six carbon intermediates.					
	(A) A is correct and R is its expla	anation (B) A is correc	ct but R is not its explanation			
	(C) A is correct but R is wrong	(D) Both A an	d R are wrong			
34.	Maximum photosynthesis occur	s in which of these lights?				
	(A) Red	(B) Green				
	(C) Very high light	(D) Continuou	ıs hright light			

	Questionbank Biology					
35.	In C_4 plants showing Kranz anatomy which of the following is correct ?					
	(A) Bundle sheath cells without grana and mesophyll cells with grana					
	(B) bundle sheath cells with grana mesophyll cells without grana					
	(C) both are without grana					
	(D) both are with grana					
36.	In Blackmann's 'Law of Limiting Factors' the rate of photosynthesis continues to increase with the					
50.	successive increase in the amounts of					
	(A) carbon dioxide, light, temperature (B) temperature, light, carbon dioxide					
	(C) light, temperature, carbon dioxide (D) light, carbon dioxide, temperature					
37.	Choose the correct statement					
	(A) Chl a is blue green pigment with formula $C_{55}H_{70}O_6N_4Mg$					
	(B) Chl a is blue green pigment with formula $C_{55}H_{72}O_5N_4Mg$					
	(C) Chl b is yellow green pigment with formula $C_{55}H_{70}O_5N_4Mg$					
	(D) Xanthophyll is pigment with formula $C_{40}H_{60}$					
38.	Chlorophyll a is absent in which of the following photosynthesising organisms ?					
	(A) Bacteria (B) Cyanobacteria (C) Red algae (D) Brown algae					
39.	Photorespiration in C_3 plants starts from.					
	(A) phosphoglycerate (B) phosphosglycolate (C) glycerate (D) glycine					
40.	Which one of the following is wrong in relation to photorespiration? It					
	(A) occurs in chloroplasts (B) occurs in daytime only					
	(C) is a characteristic of C_4 plants (D) is a characteristic of C_3 plants					
41.	In sugarcane plant CO_2 is fixed in malic acid, in which the enzyme that fixes CO_2 is					
	(A) ribulose biphosphate carboxylase (B) phosphoenol pyruvic acid carboxylase					
	(C) ribolose phosphate kinase (D) fructose phosphatase					
42.	Plants are removed from patients room at night because					
	(A) they produce CO_2 at night in more concentration					
	(B) they produce CO_2 all the time but release O_2 also in day time					
	(C) they consume O_2 at night.					
	(D) they do not photosynthesize at night, therefore fail to deplete CO_2 of the room, hence their					
	presence will increase CO_2					
43.	Who is that scientist who gave the Law of limiting factors?					
	(A) Blackman (B) Hill (C) Liebig (D) Von Mohi					
44.	Which of the following is correct for chlorophyll of cyanobacteria?					
	(A) Chl $a = C_{55}H_{70}O_{6}N_{4}$ Mg (B) Chl $a = C_{55}H_{72}O_{5}N_{4}$ Mg					
	(C) Chl $b = C_{55}H_{72}O_6N_4$ Mg (D) Xanthophyll $= C_{40}H_{56}$					
45.	How many electrons are involved for the formation of 1 mole of glucose and 6O, molecules ?					

		Questi	onbank Biology			
6.	A. The atmospheric concentration of CO_2 at which photosynthesis just compensation point.					
	R. The CO ₂ compensation point is reached when the amount of CO ₂ uptake is less than that generated through respiration because the level of CO ₂ in the atmosphere is more than that required for achieving CO ₂ compensation point.					
	(A) If A is correct and R is its explanation (B) If A is correct but R is not its explanation					
	(C) If A is correct but R is wr			and R are correct		
7.	Choose the correct statemen	t.				
	(A) The C_4 plants do not have Rubisco.					
	(B) Carboxylation of RuBP leads to the formation of PGA and phosphoglycolate.					
	(C) Decarboxylation of C_4 as	cids occurs in	the mesophyll	cells.		
	(D) In CAM plants Calvin's of	cycle reaction	s occur during	night.		
8.	Match the names of scientists Column – II ; choose the ans	0		their important contributions given under nbination of the alphabets :		
	Column – I(Scientists)	Column -	II(Contributi	ons)		
	P. Peter Mitchell	(i) Law of	limiting factor			
	Q. Blackmann	(ii) Dark re	(ii) Dark reaction			
	R. Daniel Arnon (iii) Photosynthetic phosphorylation			horylation		
	S. Melvin Calvin	(iv) Chemi	osmotic hypoth	nesis		
	t. Mass flow hyposhesis					
	(A) $P = (iv) Q = (i) R = (iii) S$	S = (ii)				
	(B) $P = (i) Q = (iv) R = (ii) S = (iii)$					
	(C) $P = (ii) Q = (i) R = (iii) S = (iv)$					
	(D) $P = (iv) Q = (iii) R = (ii) S = (i)$					
9.	Match the following with correct combination					
	P. Carboxylation	(i). Oxygei	(i). Oxygen evolution			
	Q. Phosphorylation	(ii) Photorespiration				
	R. Photolysis of water	(iii) Rubisc	:0			
	S. Phosphoglycolate	(iv) Chemo	osynthesis			
	T. Nitrosomonas	(v)ATP				
	(A) $P = (i)$ $Q = (ii)$ $R =$	(iii)	S = (iv)	T = (v)		
	(B) $P = (iii) Q = (v) R =$	(i)	S = (ii)	T = (iv)		
	(C) $P = (i) Q = (iii) R =$	(v)	S = (iv)	T = (i)		
	(D) $P = (i) Q = (iii) R =$	(iv)	S = (ii)	T = (v)		
0.	During photosynthessis, plant	S				
	(A) absorb O_2 , release CO_2	(A) absorb O_2 , release CO_2 (B) release O_2 , absorb CO_2				
	(C) absorb N_2 , release O_2	(D) absor	$b N_2$ and release	e NH ₃		

INDIAN SCHOOL MUSCAT

	Questionbank Biology				
51.	A plant with low CO ₂ compensation point is				
011	(A) Atriplex patula (B) Leucopoa kingii				
	(C) Gossypium hisrsutum (D) Tidestromia oblingifolia				
52.	Rubisco is an enzyme for				
	(A) CO ₂ fixation in dark reaction (B) photorespiration				
	(C) regeneration of RuBP (D) photolysis of water				
53.	Photosynthesis in C_4 plants is relatively less limited by atmospheric CO ₂ levels because :				
	(A) Four carbon acids are the primary initial CO ₂ fixation production.				
	(B) The primary fixation of CO_2 is mediated via PEP carboxalase.				
	(C) Effective pumping of CO_2 into bundlesheath cells.				
	(D) Rubisco in C_4 plants has higher affinity for CO_2 .				
54.	Stomata of CAM plants				
011	(A) are always open				
	(B) open during the day and close at right.				
	(C) open during the night and close during the day.				
	(D) never open				
55.	The Calvin cycle proceeds in three stages				
55.	1. reduction, during which carbohydrate is formed at the expense of the photochemically made ATF				
	and NADPH				
	2. regeneration, during which the carbon dioxide acceptor ribulose $-1, 5$ – biphosphate is formed				
	3. carboxylation, during which carbon dioxide combines with ribulose -1 , 5 - biophosphate				
	(A) 3-1-2 (B) 3-2-1 (C) 1-2-3 (D) 2-1-3				
56.	A. Under conditions of high light intensity and limited CO_2 supply, photorespiration has a useful role in protecting the plants from photo-oxidative damage.				
	R. If enough CO_2 is not available to utilize light energy for carboxylation to proceed, the excess energy may not cause damage to plants.				
	(A) If Assertion (A) and reason (R) both are correct and R is explanation to A.				
	(B) If (A) and (R) both are correct but (R) is not an explanation to A.				
	(C) If A is true but R is false.				
	(D) If both A and R are false.				
57.	A. Photosynthestically C_4 plants are less efficient then C_3 plants.				
	R. The operation of C_4 pathway requires the involvement of only bundle-sheath cells.				
	(A) If Assertion (A) and reason (R) both are correct and R is explanation to A.				
	(B) If (A) and (R) both are correct but (R) is not an explanation to A.				
	(C) If A is true but R is false.				
	(D) If both A and R are false.				
58.	One of the following is electron donor to P_{680} during light reactions of photosynthesis.				
	(A) NADPH (B) Phytochrome				
	(C) Chiorophyll (D) Water				
	(c) emerophyn (c) (mar 179				

	Questionbank Biology
59.	The requirement of assimilatory power to fix 6 molecules of CO_2 is
	(A) 6 ATP, 6 NADPH (B) 12 ATP, 18 NADPH
	(C) 18 ATP, 18 NADPH (D) 18 ATP, 12 NADPH
60.	Photorespiration and photosynthesis both require
	(A) Organic fuel (B) chlorophyll (C) cytochromes (D) energy
61.	The chemical structure of chlorophyll 'a' varies from chlorophyll 'b' due to difference between.
	(A) CH_3 and C_2H_5 (B) CH_3 and $CH_2 = CH_2$
	(C) CH ₃ and CHO (D) CHO and CH ₂ = CH ₂
62.	Choose the correct combinations of labelling the carbohydrate molecule involved in the Calvir
	cycle.
	(A) A - RuBP, B - Triose phosphate C - PGA
	(B) A – PGA, B – RuBP, C Triose phosphate
	Response GALVIN CYCLE
	(C) $A - RuBP$, $B - Triose phosphate$, $C - PGAL$
	ATP Reduction
	(D) $A - RuBP$, $B - PGAL$, $C - Triose phosphate$
63.	Chlorophyll molecules absorb light energy of wavelength
	(A) 300-400 nm (B) 400-500 nm
	(C) 600-800 nm (D) 400-500 nm and 600-700 nm
64.	The reduction of ADP to ATP occurs by
	(A) oxidation of water
	(B) high conc. of H ⁺ ions across the membrane
	(C) oxidation of NADPH
	(D) release of electron from PS-II to PS-I
65.	The process of ATP formation from ADP in the presence of light in chloroplast is called
	(A) phosphorylation
	(B) autophosphorylation
	(C) photophosphorylation
	(D) chemophosphorylation
66.	Photolysis of each water molecule in light reaction will yield
	(A) 2 electrons and 4 protons (B) 4 electrons and 4 protons
	(C) 4 electrons and 2 protons (D) 2 electrons and 2 protons
67.	The enzyme pair common to C_3 plants and EMP is
	(A) cytochrome oxidase and enolase
	(B) aldolase and triose phosphate isomerase
	(C) aldolase and enolase
	(D) phosphoglyceromutase and triose phosphate isomerase

		Questio	onbank Biology		
68.	Non-cycle photosphorylat	tion is the main p	photochemical re	eaction in green	plants because
	(A) it produces assimilatory power and oxygen				
	(B) it initiates photolysis o			1	
	(C) it utilizes more energy for oxygen production.				
	(D) there is no other cycle				
69.	is the by proc		nthesis.		
	(A) O_2 (B) H_2		$(C) CO_2$	(D) $C_6 H_{12}$	0
70.	Site of reduction of carbon			(-) - 612	2 6
,	(A) lamellae (B) thy		(C) grana	(D) stroma	1
71.	In C_4 plants, the primary ((0) 810110	(2) 50 511	-
, 11	1	alo acetic acid	(C) RuBP	(D) PEP	
72.	It is estimated that about 8				ied out by
,		B) savannas	sphotosynutou	e de li vity is cui	ieu out og
		D) herbaceous p	olants		
73.	In an experiment demonstr	, 1		Hydrilla Sodim	n bicarbonate is added to
101	water in the experimental	-		•	
	(A) Amount of oxygen e				
	bicarbonate.				·
	(B) Amount of oxygen even	olved increases a	as the avilability	of carbon dioxi	de increases
	(C) Amount of oxygen even	olved decreases	as the avilability	of carbon diox	ide increases
	(D) Amount of oxygen evo	lved increases as	carbon dioxide in	n water is absorb	ed by sodium bicarbonate
74.	In C_4 plants, the bundle sh	eath cells.			
	(A) have thin walls to facil	itate gaseous exe	change		
	(B) have large intercellular	r spaces			
	(C) are rich in PEP carbox	tylase			
	(D) have a high density of	chloroplasts			
75.	In chlorophyll structure fo	ur pyrole rings a	re united with M	Ig by their atom	as of
	(A) N (B) C	(C) H	(D)	0
76.	The fixation and reduction	$n \text{ of CO}_2 \text{ occur in}$	n preence of		
	(A) ATP	(B).	ATP and NADP	Н	
	(C) NADPH, chlorophyll	and water (D).	ATP, NADPH ai	nd light	
77.	Sugar moves in phloem ve	essels as	_•		
	(a) cellulose (b) glucose	(c) starc	ch	(d) sucrose
78.	ions help in photolys	sis of water.			
	(a) Mn++ (b) Mg++	(c) Cl ⁻		(d) both (a) and (c)
79.	RUBISCO enzyme is also	called as			
	(a) carboxy tetra mutase	(b) carbox	y di mutase		
	(c) carboxy tri mutase	(d) carbox	y uni mutase		
			\frown		
			181		

	Questionbank Biology
80.	is precursor for abscissic acid (ABA)
	(a) Zeatin (b) Lutein (c) Violaxanthin (d) Mevalonic acid
81.	In young leaves ratio of carotene to Xanthophyll is
	(a) $2:1$ (b) $3:1$ (c) $1:3$ (d) $1:2$
82.	Which of the following pigments contains open pyrolle ring?
	(a) Phycobilins (b) Xanthophylls (c) Chlorophylls (d) α -carotene
83.	In which of the following light, rate of photosynthesis is maximum?
	(a) white (b) discontinuous white (c) red (d) blue
84.	Quantum yield of photosynthesis is
	(a) 13.5 % (b) 8 % (c) 13% (d) 12.5%
85.	During light phase of photosynthesis is oxidized and is reduced.
	(a) CO_2 and Water (b) Water and CO_2
	(c) Water and NADP (d) NADPH ₂ and CO_2
86.	During dark phase of photosynthesis is oxidized and is reduced
	(a) CO_2 and Water (b) Water and CO_2
	(c) Water and NADP (d) NADPH ₂ and CO ₂
87.	The visible product of photosynthesis is
	(a) glucose (b) cellulose (c) starch (d) fructose
88.	To produce 3 glucose molecules ATP and NADPH2 molecules are required.
	(a) 54, 36 (b) 54, 30 (c) 36, 60 (d) 18, 12
89.	Glycolytic reversal is a part of
	(a) aerobic respiration (b) anaerobic respiration
	(c) light phase of photosynthesis (d) dark phase of photosynthesis
90.	RuBp carboxylase acts as RuBp carboxygenase at $_\CO_2$ conc. And $_\O_2$ conc.
	(a) low, low (b) low, high(c) high, high (d) high, low
91.	The source of CO_2 during calvin cycle in C_4 plant is
	(a) Malic acid (b) OAA (c) PEP (d) RuBP
92.	Dicot which follow C4 pathway is
	(a) wheat (b) Amranthus (c) Maize (d) Mango
93.	Absorption spectrum of chlorophyll is maximum in light.
	(a) red (b) blue (c) yellow (d) blue-violet
94.	The oxygen molecule in glucose formed during photosynthesis comes from
	(a) Water (b) Organic acids (c) CO_2 (d) atmosphere
95.	Dimorphic chloroplast are present in
_	(a) zea mays (b) sacchrum officinale (c) sorghum bicolor (d) all of these
96.	Red pigment in tomato is
	(a) β -carotene (b) Anthocyanin (c) Lycopene (d) Lutein

(182)

		Q	uestionbank Biolo	gy			
97.	Solarisation refers to						
	(a) formation of su	gar with help of wa	ter and energy	(b) destruction of chlorophyll			
	(c) synthesis of chl			(d) both b and c			
98.	Dark reaction requ	ires light reaction fo	or				
	(a) carboxylation	of RUBP	(b) regeneration	of RuBP			
	(c) reduction of PO	GA	(d) formation of	hexose sugar			
99.	Emerson effect pro						
	(a) concept of two	photosystem in pla	int (b) photo	phosphorylation			
	(c) photorespiration	n	(d) there	are light and dark reaction in photosynthesis			
100.	Name a plant which	h do not perform p					
	-		(c) cuscutta	(d)Pitcher plant			
101.	Light reaction of p						
			(c) ATP	(d) All of these			
102.	$C_{55}H_{70}O_6N_4Mg$ is	5					
		pigment in photosy	nthesis (B)	Present in PS-II			
	(C) Present in all g			All of these			
103.	The ionized chl.a ⁺	1					
	(A) Receives low	energy electron	(B)	Receives high energy electron			
	(C) Expels low en			Expels high energy electron			
104.	In Calvin cycle,	8,		r o o o o o o			
	•	phophate undergoe	es dephosphoryla	ation.			
		during dephosphoy					
		dergo phosphorylat					
	(D) none of these						
105.	,	What will happen to the rate of photosynthesis if sodium bicarbonate is added in the water having					
	hydrilla plant in a beaker						
	(A) It will remain r	ormal	(B)	It will be decreased			
	(C) It will be stop		(D)	It will be accelerated			
106.				atmosphere if all the photosynthetic activities			
	were to stop?	00					
	(A) Nitrogen	(B) Carbond	lioxide				
	(C) Hydrogen	(D) Oxygen					
107.	Photo-oxidation o	f chlorophyll and ce	ell contents as a r	esult of high light intensity is known as			
	(A) Solarization	(B) Photolys	sis				
	(C) Photperiodism (D) Photorespiration						
108.	Temperature is ver	ry high but a plant is	showing photos	synthesis with normal rate, probably it would			
	be						
	(A) C_3 plant	(B) Mango plant	(C) Pea p	lant (D) Sugarcane plant			

	Questionbank Biology
109.	For the process of photosynthesis all except one of the following items are essential. Point out exception
	(A) CO ₂ , optimum temperature (B) Glucose and oxygen
	(C) Water and minerals (D) Light and chlorophyll
110.	The prerequisities of Calvins cycle are
	(A) H_2O , CO_2 , ATP (B) ATP, H_2O , NADP H_2
	(C) \overline{CO}_2 , ATP, NADPH, (D) NADPH, H ₂ O, \overline{CO}_2
111.	In the calvin cycle, the assimilatory power is used during
	(A) Formation of PGA
	(B) Conversion of PGA to PGAL
	(C) Formation of fructose 1-6 diphsophate from PGAL
	(D) Formation of glucose from fructose – di- phosphate
112.	Which is sensitive to longer wavelength of light?
	(A) Photolysis (B) PSI (C) PS II (D) Photophosphorylation
113.	In chrophyll structure Phytol tail is present at
	(A) 3^{rd} carbon of IInd ring (B) 2^{nd} carbon of IIIrd ring
	(C) 7^{th} carbon of IVth ring (D) 3^{rd} carbon of IVth ring
114.	Reduction of co-enzyme NADP depends on
	(A) Reduction of CO_2 (B) Evolution of O_2
	(C) Photolysis of water (D) Formation of ATP
115.	Loculus is the internal space of
	(A) Grana (B) Stroma (C) Thylakoid (D) Quantasome
116.	Calvins cycle involves
	(A) Oxidative phosphorylation (B) Oxidative carboxylation
	(C) Reductive carboxylation (D) Reductive phophorylation
117.	In C_4 plants, carboxylation is twice, it can be represented as
	(A) Pyruvic acid + CO_2 and malic acid + CO_2
	(B) $RuBP + CO_2$ and pyruvic acid + CO_2
	(C) PEPA + CO_2 and RuBP + CO_2
	(D) PEPA + CO_2 and malic acid + CO_2
118.	In non-cyclic photophosphorylation, all the participants acts as electron donor and acceptor exc
	(A) Chl-a of PS I (B) Chl-a of PS II (C) NADP (D) Both (A) and (B)
119.	Ribbon shaped chloroplast is present in
	(A) Zygnema (B) Spirogyra
	(C) Chlorobium (D) Chromatinum
120.	Which of the following protist is a photoautotroph
	(A) Thiobacillus (B) Ferrobacillus
	(C) Diatoms (D) Chlorobium

	Questionbank Biology
121.	Photosynthesis takes place
	(A) Only in green light (B) Only in sunlight
	(C) In visible light obtained from any source (D) Only in high intensity of light
122.	Chlorophyll-a differes from chlorophyll-b in having—
	(A) Methly group instead of aldehyde group
	(B) Aldehyde group instead of methyl group
	(C) Methyl group instead of ethyl group
	(D) Only phytol tail instead of head
123	In non-cyclic photophosphorylation
120.	(A) ATP is generated
	(B) Both PSI and PSII are involved
	(C) Electron flow is unidirectional
	(D) All the above
124	In con-cyclic photophosphorylation, the electron emitted by P_{680} is replaced by electron from
1211	(A) NADP (B) Water (C) Ferridoxin (D) Chlorophyll-a
125	85-90% (9/10) of all photosynthesis in the world is carried out by
120.	(A) Shrubs (B) Algae of the oceans
	(C) Herbs (D) Scientists in the laboratory
126.	Primary and secondary processes of Photosynthesis takes place in and respectively.
1201	(A) Stroma and grana (B) Stroma and lamellae
	(C) Thylakoid and quantasome (D) Grana and stroma
127.	
	(A) Formation of ATP (B) Release of O ₂
	(C) Formation of NADPH, (D) Involvement of both PSI and PSII
128.	The photochemical process in photosynthesis which needs both PSI and PSII also involves
	(A) Photolysis of water (B) Z-scheme of electron transfer
	(C) Synthesis of assimilatory power (D) All of these
129.	For synthesis of one molecule of glucose, the requirement of ATP and NADPH, is respectively
	(A) 15 and 10 (B) 12 and 8
	(C) 30 and 15 (D) 18 and 12
130.	Which of the following element is needed for chlorophyll biosynthesis?
	(A) Copper (B) Magnesium
	(C) Calcium (D) Chlorine
131.	The two enzymes responsible for primary carboxylation in C_3 and C_4 pathway, respectively are
	(A) RuBP carboxylase and RuBP oxygenase
	(B) PEP carboxylase and RuBP carboxylase
	(C) RuBP carboxylase and PEP carboxylase
	(D) PEP carboxylase and pyruvate carboxylase

	Questio	nbank Biology								
132.	are placed one above the other to form stack of coins									
	(A) oxysomes (B) F ₁ particles (C) cristae (D) thylakoids									
133.										
	(A) PSII $\xrightarrow{e^-}$ PS-I $\xrightarrow{e^-}$ NADP $\xrightarrow{e^-}$ water									
	(B) Water \xrightarrow{e} PS-II \xrightarrow{e} PS-I \xrightarrow{e} NADP									
	(C) $PSI \xrightarrow{e} NADP \xrightarrow{e} water \xrightarrow{e} PS II$									
	(D) Water $\xrightarrow{e^-}$ PSI $\xrightarrow{e^-}$ PSII $\xrightarrow{e^-}$ NADP									
134.	. The head and tail of chlorophyll are made up of									
	(A) Pyrrole and tetrapyrrole (B) Porphyrine and phyrin									
	(C) Pophyrine and phytol (D) Tetrapyrrole and magnesium									
135.	. The numbner of photons needed for the evolution of one molecule of oxygen is									
	(A) 8 (B) 2 (C) 12	(D) 18								
136.	Action spectrum is									
	(A) A graph showing amount of light absorbed									
	(B) A graph showing rate of photosynthesis									
	(C) A graph showing absorption of light									
	(D) A graph showing amount of CO_2 released									
137.	7. $C_{40}H_{56}O_2$ is molecular formula of									
	(A) Xanthophyll	(B) Carotenes								
	(C) Chlorophylls	(D) Phycobillins								
138.	Quantasome contains									
	(A) 150-200 chlorophyll molecules	(B) 200 chlorophyll molecules								
	(C) 230-250 chlorophyll molecules	(D) 300-350 chlorophyll molecules								
139.	Erythrose monophosphate (4C) is formed of	-								
	(A) CAM pathway	(B) C_4 pathway								
	(C) Conversion of fructose to glucose	(D) Regeneration of RuBP								
140.	Donor and acceptor of electrons is the same chlorophyll molecule in									
	(A) Cyclic phtophosphorylation	(B) Photorespiration								
	(C) Substrate level phosphorylation	(D) Non-cyclic photophosphorylation								
141.	If a photosynthsing plant releases O^{18} , it is concluded that the plant has been supplied with									
	(A) Water containing O^{18}	(B) Oxygen in the form of ozone								
	(C) Sugar containing O ¹⁸	(D) Carbon dioxide containing O ¹⁸								
142.	• • •	and secondary processes of photosynthesis?								
	(A) NADPH ₂	(B) ATP and NADPH ₂								
	(C) ATP	(D) Ferridoxins								

143.	C_4 plants can perform photosynthesis									
	(A) Even in low light intensity									
	(B) Even in low CO_2 concentration									
	(C) Both (A) and (B)									
	(D) Only in high intensity of light and high CO ₂									
144.	In Hill's experiment, Hill used as oxygen acceptor,									
	(A) Hydrogen (B) FAD (C) NADP (D) Haemoglobin									
145.	Fret channel is a another name for									
	(A) Stroma lamellae ((B) Intergranal lamellae								
	(C) Grana lamellae (D) Space present in stroma lamellae									
146.	Bundle sheath chloroplast of C_4 plants are									
	(A) Large and agranal (B) Large and granal									
	(C) Small and granal (D) Small and agranal								
147.	In C_3 pathway, out of 12 molecules of 3-PGAL, how many are used for regeneration of RuB									
	(A) 12 (B) 8 (C) 10 (D) 6								
148.	. A plant is kept in 300 ppm CO_2 concentration. What will happen to it									
	(a) Plant will die soon									
	(b) Plant will grow but will not die(c) Plant will show normal photosynthesis									
	(d) Respiration will be greatly decreased									
149.	All plastids have essentially same structure because									
	(a) They have to perform same function									
	(b) They are localized in aerial parts of plants									
	(c) All plastids store starch, lipid and proteins (d) One type of plastid can be differentiated into another type of plastid depending on cell									
	requirements									
150	Give the correct name of indicat									
	3	3 -Thylakoid C n								
		B-cytocrome-a & a ₃								
		3-Thylakoid								
		3-Thylakoid								
151	which process is indicated by the	B given chart?								
	Ple see fig. (QUE:150)									
	(A)Synthesis of ATP by chemiosmosis(B) Synthesis of food by chemiosmosis									
	(C)hydrolysis of water by chemiosmosis									
	(D)transfer of electron by chemiosmosis									

Questionbank Biology

ANSWER KEY

1	C	26	С	51	Α	76	В	101	D	126	D	150	С
1					-	76					_		
2	C	27	В	52	В	77	D	102	D	127	Α	151	Α
3	Α	28	D	53	В	78	D	103	Α	128	D		
4	D	29	D	54	С	79	В	104	Α	129	D		
5	Α	30	Α	55	Α	80	С	105	D	130	В		
6	D	31	В	56	D	81	D	106	D	131	С		
7	Α	32	C	57	D	82	Α	107	Α	132	D		
8	D	33	С	58	D	83	В	108	D	133	В		
9	С	34	Α	59	D	84	D	109	В	134	С		
10	Α	35	Α	60	С	85	С	110	С	135	Α		
11	В	36	Α	61	С	86	D	111	В	136	В		
12	В	37	В	62	D	87	С	112	В	137	Α		
13	Α	38	Α	63	Α	88	Α	113	С	138	С		
14	C	39	В	64	В	89	D	114	С	139	D		
15	C	40	С	65	С	90	В	115	С	140	Α		
16	D	41	В	66	D	91	Α	116	С	141	Α		
17	В	42	В	67	В	92	В	117	С	142	В		
18	D	43	Α	68	Α	93	В	118	С	143	В		
19	D	44	В	69	Α	94	С	119	В	144	D		
20	C	45	В	70	D	95	D	120	С	145	D		
21	Α	46	С	71	D	96	С	121	С	146	Α		
22	С	47	С	72	С	97	В	122	Α	147	С		
23	Α	48	Α	73	D	98	С	123	D	148	С		
24	В	49	В	74	D	99	Α	124	В	149	D		
25	C	50	В	75	Α	100	D	125	В				